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The quantum Monte Carlo (QMC) technique is an extremely powerful method to treat many-body systems.
Usually the quantum Monte Carlo method has been applied in cases where the interaction potential has a
simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a semi-
conductor heterostructure, the evaluation of the interaction itself becomes a nontrivial problem. Obtaining the
potential from any grid-based finite-difference method for every walker and every step is infeasible. We
demonstrate an alternative approach of solving the Poisson equation by a classical Monte Carlo calculation
within the overall quantum Monte Carlo scheme. We have developed a modified “walk on spheres” algorithm
using Green’s function techniques, which can efficiently account for the interaction energy of walker configu-
rations, typical of quantum Monte Carlo algorithms. This stochastically obtained potential can be easily
incorporated with variational, diffusion, and other Monte Carlo techniques. We demonstrate the validity of this
method by studying a simple problem, the polarization of a helium atom in the electric field of an infinite

capacitor.
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I. INTRODUCTION

Simulation of an N-particle quantum system is essentially
solving Schrodinger’s equation involving the
3N-dimensional wave function which defines the state of the
system. Stochastic methods like quantum Monte Carlo
(QMC) technique are very appropriate, useful, and accurate
to treat systems of such large dimensionality [1,2]. These
methods have been applied extensively to study properties
like cohesive energies of molecules [3] and solids [4], and
properties of the electron gas [5,6], solid hydrogen [7,8],
clusters [9], and much more.

Recently there has been great interest in studying semi-
conductor devices operating in highly quantum regimes, like
quantum dot devices [10], quantum wires [11], single-
electron transistors [12], etc. For simulation purposes struc-
tural details of these devices are usually represented by
simple analytically tractable models [13]. However, these
models sometimes lead to an inadequate description of the
interaction energies [14]. There have been only a limited
number of applications of the quantum Monte Carlo tech-
nique to realistic models of such physical devices capturing
the details of the potential profile [15], and even this known
work has been restricted to making simplifying assumptions
on the form of the potential. The reason is that while simu-
lations of natural or idealized structures involve interactions
with simple analytic forms (like Coulomb, Lennard-Jones
etc.), the interaction in artificial devices is too complicated to
be efficiently treated within the quantum Monte Carlo
method. Our goal is to extend the application of the quantum
Monte Carlo technique to semiconductor devices in a simple
and straightforward way.

Among the several quantum Monte Carlo methods, we
will mainly focus on zero-temperature methods like varia-
tional Monte Carlo (VMC) [16] and diffusion Monte Carlo
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(DMC), since these are the simplest to code and most exten-
sively used. We should mention here that our approach can
also be used in conjunction with any other kind of quantum
or classical Monte Carlo algorithm. The methods we are con-
cerned with, i.e., variational and diffusion Monte Carlo, both
follow the same basic idea; they calculate the expectation of
observables associated with a particular state of the system.
Consider an N-particle system, and denote the coordinate of
the ith particle by ¢;. The simulation generates a set of M
configurations {R}, called “walkers,”

{R}=R],...,Rm,...,RM, Rm={q1,...

i.e., each walker is a realization of the system in a particular
configuration. The algorithm to generate {R} depends on the
method involved, but it results in the walkers being distrib-
uted according to (or something close to) W2, where W is the
relevant state. Accurate estimate of any observable can then
be obtained.

Application of these methods to an entire device structure
can be prohibitively expensive. Progress can be made by
isolating the physical region dominated by quantum mechan-
ics from the background, which can be treated semiclassi-
cally. The walkers are created only in the quantum region
and are confined there. The potential profile in this region is
thus governed by the complicated interparticle interactions,
the effect of the semiclassical background, induced image
charges, and the gate voltages on the surface boundary of the
device. The net effect in general is very complicated.

This potential profile is, however, the defining character-
istic of the system. The quantum Monte Carlo algorithms
inevitably involve repeated computation of the potential en-
ergy V(R,,) of each walker configuration R,, during and after
their evolution into the final equilibrium distribution. In gen-
eral, there will be no analytic expression for V(R,,) except in
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highly idealized cases, and it will have to be obtained as an
explicit solution of Poisson’s equation at every step. This is
infeasible for any grid-based finite-element-like method.

The only application [15] of the quantum Monte Carlo
method to realistic devices that we know of circumvents this
by approximating the background potential by a self-
consistent Poisson-Schrodinger solution using a local spin
density approximation (LSDA) quantum charge density. The
walkers move around in this rigid background, and the par-
ticles interact by a simple Coulomb interaction. But strictly
speaking, the interaction is not Coulomb-like; it is modified
by the induced charges at dielectric interfaces and metal sur-
faces. Also the LSDA approximation itself breaks down for
highly correlated systems producing theoretically impossible
results like predicting phase transitions in finite systems
[17,18]. However, we will show that the quantum Monte
Carlo method can be applied to realistic models of such sys-
tems without these approximations, if we can solve the po-
tential stochastically.

Our stochastic approach has several advantages. Tradi-
tional grid-based methods expend a lot of computation in
solving the equation at all grid points over the entire device.
These grid points are placed at discrete intervals, and thus
limit the resolution of the device structure. This resolution
can be increased only at considerable cost. However, the
stochastic method obtains the solution only at the desired
points (for, e.g., the walker configuration R,,). Second, this
does not suffer from the resolution issues of the grid-based
methods; any point can be treated with arbitrary accuracy.
Moreover, the stochastic methods can handle regions of very
sharp gradients much more effectively than grid-based coun-
terparts.

In this introductory paper we will only present the mecha-
nism of using the stochastic potential solver in conjunction
with the quantum Monte Carlo method. To this end, we will
investigate a very simple system with a known analytic po-
tential, to test the applicability of this method. Application to
realistic devices will be presented in future work. The rest of
the paper is organized as follows. In Sec. I we describe the
existing methods of solving Poisson’s equation by Monte
Carlo simulation. In Sec. III, we adapt this method to ac-
count for discrete point charges like walker densities. In Sec.
IV, we describe different techniques by which we can greatly
increase the efficiency for certain situations. In Sec. V, we
incorporate this technique into the quantum Monte Carlo
method and in Sec. VI we present a simple calculation of the
polarizability of a helium atom in between plates of an infi-
nite capacitor, using variational and diffusion Monte Carlo
techniques.

II. STOCHASTIC POTENTIAL SOLVER

The probabilistic potential theory arises from the connec-
tion between Brownian motion and classical potential theory,
first made by Kakutani in 1944 [19]. Interestingly, the first
use of the Monte Carlo method to solve Schrodiger’s
equation, by Metropolis and Ulam was also around the same
time in 1949 [20]. However, Muller [21] was the first to
layout a detailed mathematical framework and algorithm to
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FIG. 1. A walk on spheres: A generic device with metal gates on
a surface held at arbitrary voltages. Start by constructing the maxi-
mum sphere S, of radius d, centered on P(r). Sample a point r,
uniformly on S,. Repeat the process by constructing sphere Sy, etc.
The walk ends when the sampled point r* is within a range & of the
boundary d€). Such walks will never end exactly on the boundary,
but with §<<d,, the estimate can be made arbitrarily accurate.

solve Laplace’s equation, which was later developed by
Haji-Sheikh and Sparrow [22] when they applied this
method for a nonzero constant heat-source term. Physically,
heat flow, natural diffusion, Brownian motion, and potential
all follow similar diffusion equations, and hence can be
solved by similar stochastic methods. A nice and more de-
tailed introduction can be found in the work of Bevensee
[23].

Of the various stochastic approaches to the potential prob-
lem [24], we will present the “floating random walk™ algo-
rithm for both its clarity and usefulness for our purpose. The
main idea is best illustrated in a charge-free system
(Laplace’s equation), the basic algorithm being the same
even for the general problem as will be shown in the next
section. We know that the solutions of Laplace’s equation are
harmonic functions which obey the mean value theorem [25]

O(r) =

A f O )d*r', (1)

i.e., the potential ®(r) at any point r is the average of the
potential over a sphere of arbitrary radius d centered at r.
Here we will use r and P(r) interchangeably to denote the
same point. We assume Dirichlet boundary conditions, i.e.,
the potential is known on the external surface. Neumann
boundary conditions can also be accommodated [22]. A
simple random walk algorithm called the walk on spheres
(WOS) due to Muller [21] can solve Eq. (1) in a very elegant
way.

Consider a region () with external boundary () where the

potential is specified, ®@,,,(r) for r € ) (see Fig. 1). To ob-
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tain the potential at any point P(r € {)), construct the largest
possible sphere S, centered at P(r) but fully contained within
Q). Such constructions will be called the “maximum sphere”
following Muller. The radius of this sphere is simply the
minimum distance to the boundary ¢€). The averaging of Eq.
(1) is carried out by sampling points r; [and the potential
®(r;)] uniformly over the surface of S;. Hence the solution

®(r) represented by the estimator (D(r)) is given by (D (r))).

Here Cﬁ(r) is the estimate of an individual sample.

But of course, the potential ®(r,) is unknown, and thus
we need to continue the process giving rise to a “walk” as
illustrated in Fig. 1. A maximum sphere is constructed cen-
tered about r;, and a point r, is sampled on it, and the walk
continues until the sampled point r* lies on or very near the
boundary ), where the potential is known, ®(r* € ()
=®,,,(r). This generates a walk g —r—r,---r*, (see Fig.
1). An average over many such walks will provide an esti-
mate of the potential at P(r), the starting point. Hence,

<CI~>(r)>:<CI>app(r*)>. Thus, for A such walks the mean of the
estimate is

N
~ 1
(®(r)) = lim _E q)app(r;)’
n=1

—00

with an error of

N
_ o1 (1 -
o= 75 i -

III. THE GREEN’S FUNCTION APPROACH

Much insight into the above method can be obtained from
a full mathematical treatment of the general problem,
namely, the Poisson equation

V2D (r) = — p(r)/e )

where p(r) is the charge density, and ¢ is the dielectric con-
stant of the medium. Keeping in mind the discrete nature of
walker configurations in the quantum Monte Carlo tech-
nique, we are interested in the potential at a point r due to a
point charge at r’, given everything else in the problem. This
is embodied in the idea of the Green’s function, defined as

V2Grr)=-8r-r"), rr e,

G(r,r')=0, r' ed (3)

where () is any volume within the region, and Q) is the
surface of that volume. Without loss of generality let us de-
note by () the entire system volume. The second equation is
a consequence of the Dirichlet boundary condition. In terms
of this Green’s function, the potential ®(r) at any point r is
given by [26]
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<I>(r):J p(r’)G(r,r’)d3r’+f ar' -VGr,r)dr'),
Q a

Q
4)

i.e., the potential has contributions from both the volume
charges (like doped charges) and the boundary potential (like
voltages applied at metal gates on the surface). Also, we
need to know the potential ®(r’) on the surface. Thus the
Green’s function plays a crucial role in the interparticle in-
teractions; if we know it then we have solved the problem.
We stress again that Eq. (4) holds for any volume ().

As we will show, a method called the domain Green’s
function Monte Carlo method [27], originally developed to
solve Schrodinger’s equation, evaluates both integrals in Eq.
(4) simultaneously. This is not surprising given the connec-
tion between diffusion (like the imaginary time Schrédinger
equation), Brownian motion and potential theory. The key
idea is to realize that we can write Eq. (4) for any domain D
of any arbitrary shape instead of ) which is the entire sys-
tem. This will require a redefinition of the Green’s function
Gp(r,r') to be defined only within the domain D with sur-
face dD. Thus,

V'2Gprr)==8r-r'), rr' eD,

Gp(r,r’)=0if r' € dD or outside D. (5)

Since the choice of the domain D is arbitrary, we should
choose it such that Gp(r,r’) has a known analytic form and
is inexpensive to compute. In terms of this domain Green’s
function, the potential in Eq. (4) becomes

@(r):J p(r’)GD(r,r’)er’+j d*’r' -VGp(r,r)®').
D D

(6)

The first integral is known exactly, and the second integral is
very similar to that in Eq. (1); in fact if the gradient term is
constant, then they are identical up to a constant factor.
Hence the same WOS algorithm can evaluate this term, pro-
vided we generalize it to the arbitrary domain D and sample
its surface dD, not uniformly as in the WOS, but according
to VGp(r,r’). We have thus generalized the WOS to a “walk
on domains” Dy, Dy,... instead of spheres. The iterative na-
ture of Eq. (6) is inherent to the WOS algorithm. Accumu-
lating contributions of Gp(ry,r.,;) from each domain D,
along the walk and averaging over several such walks will
provide an estimate of ®(r). To evaluate the first integral of
Eq. (6) we sample a point s in the domain according to
Gp(r,r') and accumulate p(s) (with proper normalization)
[28]. Thus the walk on spheres or domains is a general algo-
rithm to solve the potential problem. For completeness we
should also mention that the Green’s function for the entire
system defined over () is given by

G(r,r')=Gp(r,r') +f d*r" -VGpr,r\Gr"r') (1)

JD

and our walk is implicitly constructing this Green’s function.
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Though theoretically the domain shape can be arbitrary, in
practice it is wise to choose a shape for which Gp(r,r’) is
known and inexpensive to compute. If we restrict ourselves
to spherical domains, the Green’s function has a particularly
simple form. For a sphere of radius d centered at r,

, 1 1 1

Gplrr )_47Ts<|r—r’| d)’ ®
and d’r'-VGp(r,r')=dr, i.e., the domain surface should be
sampled uniformly, exactly as in the WOS. Also we see that
this captures the 1/r Coulomb term but also provides the
corrections due to the boundary conditions.

This algorithm also naturally accounts for the quantum
Monte Carlo walker density which is simply 2,0,6(r-q;),
where Q; is the charge of the jth particle at ;. The volume
integral [pG d°r of Eq. (4) merely becomes 2,0/G(r.q,),
which we have already described how to compute. To use
this algorithm with the quantum Monte Carlo method we
simply need to convert the potential ®(R,,) into the potential
energy V(R,,).

The total potential energy of the configuration is

a 1
V(R,)= E Qi(q)gale(qi) + EE QjG(‘Ii"Ij)>
i=1

JFi
N
+2 Vi), g} €R,,. )
i=1

V.i(q;) is the effect of the charges induced in the environ-
ment by the particle at g; itself. This effect manifests itself in
the Green’s function for the particle G(q;,q;) which is of
course divergent due to the inherent Coulomb divergence of
any charged particle. So,

0’
Vself(qi) = 71 hm(G(r,q,) -

r—q;

R )
47Ts|r—q,~| '

For the spherical domain, this simplifies beautifully; the 1/r
divergence in Eq. (8) cancels with that in the self-term above
leaving a contribution of —Q?/ (2d,) from the first domain.
The remainder is an extra contribution from each subsequent
domain of the same WOS; together, this accounts for the
entire potential energy.

IV. IMPROVING EFFICIENCY

Convergence properties of the WOS algorithm have been
extensively studied by Muller [21] and DeLaurentis and
Romero [28]. For an N-particle system, each walk takes on
average n=0(|log 8|) (see Fig. 1) steps to converge. A sepa-
rate walk has to be started from each particle at g; V; in the
sum of Eq. (9). An N-fold efficiency can be gained if the
same walk can estimate the potential at points neighboring
the origin of the walk. If the walkers {R} are all confined
within a small region, then an algorithm by Pickles [29] to
calculate electric fields can be adapted for this purpose.

The basic ideas and equations have already been intro-
duced. In the previous section we generalized the mean value
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FIG. 2. Sampling the interaction between points ¢ and r inside
the domain D, centered at vecr,.

theorem Eq. (1) (for spherical domains) to domains of arbi-
trary shapes by means of

D(q) =f &’r' -VGp(q,r D).
aD

For the sphere centered on the point g with Gp given by Eq.
(8), this reduces to Eq. (1) which is uniform sampling over
the domain surface. However, we could as well use an “off-
centered” Green’s function which would account for the po-
tential not just at the domain center but at neighboring points
as well. So for a sphere of radius d and centered at r,, we
need Gp(g,r) between any two points ¢ and r inside the
sphere. This is easily obtained from the method of images

[30]
1 1 d
=L )
D= e\ lg=r] " Ir=rollg = @in’r]

Sampling the point r; on the domain surface (see Fig. 2)
could still be uniform if the walk is weighted by a factor of
w,=VG%(q;,r)=d(d*~q})/|q;—r|* for each particle at g;.

So the modification needed to the WOS is very simple.
The first sphere is centered at some common point, say the
centroid of the walker configuration. The point r; is sampled
uniformly on the domain surface, and the weight w;
=w(q;,r;) is computed for each particle. From then on, the
walk continues using centered spheres using Eq. (8). The
potential ®(g;) sampled from this walk is obtained by
weighting the walk by the prerecorded w(g;,r;)’s. Thus the
contribution of the applied potential, i.e., the Q;®(q;) part of
Eq. (9), becomes

1 N
./T/E in(th(ln))q)app(r;) .
n=1

However, if the particle position ¢; happens to be far from
the domain center ry, i.e., near the surface of the first domain,
then the estimate of ®(q;) is dominated by only a few walks
with large weights and the noise in the estimate is magnified.
A good rule of thumb is to choose the first sphere of radius
d, such that |q;—ro|<d,/2 V,.
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This method can be directly used for a fast and efficient
estimation. Suppose we perform an initial calculation to gen-
erate \V runs, where the nth run samples the point r(l") on the
surface of the first domain and the run ends on the device
boundary at a point r,. If we tabulate this information
{r(") (I)dpp(r )} V n=1,...,/N, then at any later time we can
obtain a quick estimate of the potential at any point g; by
simply evaluating

N

1

q)(q ) N, 2 W(qt’rl)q)app(r ) (N, = -/V)

without the need for any more time-consuming walks. The
accuracy will of course depend on N’. Generating all our
estimates from the same finite set of data can lead to undes-
ired correlations, which can be reduced by simply limiting
the number of estimates according to the size of the data set
used. A good rule of thumb is to obtain no more than A

separate estimates [for, e.g., CI~>(q,-), i=1,...,N] from a data
set of size N.

Many further improvements are possible. As will be
shown below, this approach (of using off-centered domains)
can be slightly modified to be used as one of many variance
reduction techniques which can be easily incorporated within
the WOS scheme. However, the effectiveness of each tech-
nique will depend on the system or rather on the various
competing contributions to the potential. Here we present a
general overview of some of these strategies. In Sec. VI, we
will discuss these approaches in light of a simple application.
The contributions to the potential come mainly from the ef-
fect of the applied boundary voltages and interaction be-
tween the volume charges. The choice of approach to reduce
noise will depend on which of these contributions dominates.

Consider, for example, the approach described above of
obtaining the potential at points neighboring the walk origin.
This can be used to reduce the variance in the contribution of
the applied boundary potentials. Suppose we know the po-
tential ®(r,) at some point 7. in the first domain (it could be
the origin of the walk). A stochastic estimate of the quantity
Aq)ic:<q~)(‘1i)—q~)("c)> using the weight wi.=w(g;)-w(r.)
will have a much smaller variance than subtracting the sepa-
rate estimates. This is simply a form of correlated sampling.
Then we can easily obtain ®(q,)=P(r.) +AD,,.

Importance sampling is another technique that can be con-
sidered when we have some a priori knowledge of the po-
tential profile; we can preferentially sample the important
regions of the device and this will reduce variance. The form
of the importance function will depend on the device geom-
etry and we will discuss a specific example in Sec. VI. For
now, we will simply demonstrate a zero-variance principle,
i.e., if we know the potential exactly, then the potential itself
is the optimal importance function and the WOS can recover
the potential without any noise in the estimate. This by itself
is an uninteresting result but what is important to note (and
will be demonstrated later) is that the variance can be re-
duced arbitrarily if even an approximate importance function
can be arbitrarily improved to approach the optimal form.

The WOS integral is of the form
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CID(r):fVGD(r,r')fl)(r’)dzr’.

For the spherical domain, a choice of importance function
I(r) leads to

D(r
®r)= f NI )/I(r)(

we sample according to the term within the square brackets,
and carry a weight I(r)/NI(r') for each domain. Here N is
the normalization, and r is the center of the domain while r’
is the next point in the walk sampled on the surface of that
domain. As the walk proceeds ro—ry,...,r,, the accumu-
lated weight becomes

1 I(ro) I(ry)
N1 1(ry) I(r)

I(r') sin ad0d¢>
Iry 2 2«

1(ry) _”I("m—1)_ 1 I(ry)
I(rk+l) I(rm) _Nm_ll(rm),

the walk reaches the boundary at r,, and picks up the poten-
tial ®(r,), and the accumulated term from the walk is
I(ro)®(r,,)/N"'I(r,,). If the importance function is chosen
such that I(r)=®(r), then it is seen from the mean value
theorem above that the importance function is normalized,
i.e., N=1, and the accumulated contribution from each
walker is ®(r;) leading to zero variance. If the importance
function is not optimal, then the normalization needs to be
carried along and the zero-variance principle does not hold
any more.

Other standard variance reduction techniques may also be
considered. Antithetic variates can be easily implemented by
constructing pairs of walks; the walks in each pair will
sample opposite points on the surface of the first domain.
However, the drawback of the method is that this can be
constructed only for the first domain; beyond this the walks
will proceed independently. We find this to yield only a mar-
ginal improvement even when the potential profile is anti-
symmetric about the origin of the walk. In general this
method will not be very effective for arbitrary potential pro-
files.

V. QMC METHOD WITH A STOCHASTICALLY
SAMPLED POTENTIAL

Now we demonstrate how quantum Monte Carlo methods
can incorporate the stochastically sampled potential. In this
regard we will study the two most popular methods, namely,
variational and diffusion Monte Carlo techniques. Note that
we have two different samplings or “walks,” one to solve the
Schrodinger equation which we will refer to by the standard
name “walkers” described before, and the walks needed to
solve the classical potential problem, which we will refer to
as “runs” or “runners” to distinguish them from the walkers.

A. Variational Monte Carlo Method

The variational approach posits a functional form of the
trial wave function W;(a) which depends on a set of param-
eters {a} [2,3]. Minimization of the energy, (or variance or a
mixture of both) with respect to the set {a}, by methods like
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correlated sampling [31,32] gives the variational estimate of
the energy,

r?i}n(‘I’T(a) |H| V(@) = Eypcs

where H:—%V2+V is the Hamiltonian in a.u. The minimi-
zation aside, E=(¥;|H|¥;) (dependence on a dropped for
convenience) is simply a multidimensional integral which is
performed by the Monte Carlo technique. The estimator for
this integral is called the local energy,

HY(R) _ 1V2‘I’T(R)
VAR) 2 VAR

E,(R) = + V(R). (10)

A set of randomly distributed configurations {R} called
walkers is sampled according to the Metropolis algorithm
[33,34] to generate the distribution P2, ie., P(R,)=V2,
where P is the probability distribution function (unnormal-
ized). It is important to note here that this sampling does not
involve a knowledge of the potential profile V(r,R,,) for the
walker R,,. If M configurations are generated, then (after
equilibration)

M
MWGJWM%MWW*$EWM)(W
m=1

is an estimate of the potential energy of the state W;,. Here
V(R,,) is the exact potential energy of the walker R,, distrib-
uted according to W 2T However, even if we use a potential

V(R,,) that is stochastic,

(V(R,))vmc = (V(R,)wos- (12)
This is seen from the following. The stochastic potential

can be expressed as V(Rm)=V(Rm)+A(Rm), where in the
limit of large samples, the error A(R,,) is normally distrib-
uted with mean zero. Hence (A(R,,)) is

M
lim lE AR,)=| dr ]P(Rm)U A]P(A)dA) =0,

M—x m=1

(13)

simply from the zero mean property of the error A. Thus the
variational Monte Carlo algorithm can simply use the sto-

chastic potential V(R,,) without any other modifications. The
primary requirement for the variational Monte Carlo method
to work is that the distribution P(A) have zero mean.
Consider a simple system with a known potential profile
V(r). Suppose to calculate the expectation of the potential
energy corresponding to some given state W (using the
variational Monte Carlo technique) with a target error of 8V,
we need N,, walkers. We can perform the same calculation
using the stochastic potential instead of the known form, and
using N, runners (as described at the beginning of this sec-
tion) for each walker, a total of N,,N, samples. Numerical
experiments show that the calculation is optimal when N,
=1 and N,, is chosen such that an independent stochastic
calculation of the potential ®(P) at some point P using N,,
runners yields an error 6&~O(8V). This is because the
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variational Monte Carlo technique is insensitive to the accu-
racy of the potential sampled, as long as there are enough

samples. So it is optimal to sample V(R) for more configu-
rations using more walkers rather than increasing the accu-
racy of each estimate.

Optimization of the trial wave function W can easily be
carried out by correlated sampling as usual, except that the
WOS can optimize only the variational energy and not the
variance of the energy. One important distinction from the
usual computer algorithms needs to be emphasized. During
the initial variational Monte Carlo run to generate the con-
figurations, programs record the walker configurations, but
usually not the corresponding local potential energies V(R,,)
(the potential part of the local energy which depends on the
wave function only through the walker distribution). When
the optimizer modifies the parameters e, changing the trial
wave function W(a), the corresponding local kinetic energy
—%VZ\PT/\I’T also changes. And the local energy of the
walker is calculated anew because this saves storage and a
known analytic potential is usually not too expensive to re-
compute.

However, recomputing the stochastic potential would in

general produce a different estimate than before, i.e., V(Rm)
will be different each time we recompute it. This will intro-
duce an error which will not cancel on averaging, and hence
will destroy the optimization. This is easily remedied by sim-
ply recording the estimate of the local potential energy

V(R,) while recording the configurations {R}. This will
eliminate the overhead of recomputing the potential, which
can be expensive, the cost being a marginal increase in stor-
age. By using the same local potential for a given configu-
ration at every iteration of the optimization process we en-
sure that we minimize the correct estimate of the local
energy.

B. Diffusion Monte Carlo Method

The stochastic potential approach is particularly compat-
ible with the variational Monte Carlo technique because the
VMC is linear in energy, and thus able to take advantage of
Eq. (12). Exact Green’s function Monte Carlo methods are
also linear in energy and would be able to take advantage of
this approach. However, the diffusion Monte Carlo method is
not an exact Green’s function method because of the short-
time approximation which simulates the Green’s function by
diffusion and branching. This makes the use of the WOS
with the diffusion Monte Carlo technique not as straightfor-
ward as with the variational Monte Carlo method.

To see why this is the case, we review the basic ideas of
the diffusion Monte Carlo algorithm very briefly. For practi-
cal details regarding implementation, see reviews or books
like [2,3,35]. The Schrodinger equation in imaginary time

- 9 (R.1) = (H - Ep) (R.1)

can be transformed into an integral equation of the form
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SR, t+ T):fG(R,R’;T)f(R',t)dR’, (14)

where f(R,5)=y/(R,1)V(R,¢) is a product of a known “trial”
or “guiding” function W, and the eigenfunction . E; is an
energy offset and G(R,R’;7) is the Green’s function or
propagator. The integral equation is solved iteratively by
starting with an initial distribution f;,;= ;W7 or rather a set
of walkers distributed according to f;,;,. Repeated application
of the Green’s function to this state projects out the lowest-
energy state not orthogonal to ;.

The essence of the algorithm is in calculation of this
Green’s function G(R,R'; 7). If E; and E; are the local en-
ergies at points R and R’, respectively, then within the dif-
fusion Monte Carlo method the Green’s function is approxi-
mated by

GR,R ;7) = Gdiff(R,R,;T)GB(EL,Ei;T), (15)
where
1 [R—R'—Tv(R’)]z)
Gyire(R.R';7) = ———75 exp| -
aife 7) Qmr) 2 xp( 27

and

GB(EL’EL,,; T) = eXp{— [EL(R) + EL(R,) - 2ET]T/2}
(16)

Gy 1s the Green’s function for a diffusion process, v
=VIn|V(R)| is a drift velocity, N is the number of particles,
and Gp is a weight factor. This approximation holds for small
time step 7. This basic algorithm is improved by means of an
importance function and imposing an acceptance or rejection
step which makes the density proportional to the said func-
tion. This improves the convergence of the algorithm, but we
do not go into the details of efficient DMC algorithms here,
since this is not germane to the present problem. For details
see [3].

For improved stability and convergence most algorithms
implement the weight factor Gz by a “branching” or “birth-
death” process in which ng=int[ G+ &] copies of the walker
survive to the next step [36]. Here ¢ is a random number
drawn uniformly in the range (0,1]. Thus in the regions of
high potential energy Gy is small and the walkers disappear,
while in the regions of low potential energy Gy is large and
the walkers proliferate. This is a marked difference from the
variational Monte Carlo algorithm since here the number of
walkers and hence the walk itself depend on our estimate of
the potential.

We note in passing that the local energy as defined in Eq.
(10) is the sum of kinetic and potential terms. But all that is
germane to the following discussion is contained in the sim-
plest unsymmetrized form of the weight Gg. Thus
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Gp(V,7) =exp(- V7),

which depends only on the potential energy V(R), is enough
to illustrate all the issues of using a stochastic potential with
the diffusion Monte Carlo technique. Gy(E;) is simply
Gg(V) with a factor that is independent of the potential and
hence not relevant to the ensuing discussion. These consid-
erations greatly simplify the notation in the present discus-
sion. However in the numerical experiments in Sec. VI we
use the importance-sampled diffusion Monte Carlo algorithm
with the Green’s function given by Egs. (15) and (16).
Sampling with a stochastic potential has serious implica-
tions for the branching. Unlike the situation in the variational
Monte Carlo method the effect here is nonlinear (exponen-
tial) and hence a simple averaging will not get rid of the
noise in the potential. If we branch using a stochastically

obtained potential V, then in effect we will be branching on
average according to (exp(—V7)). This is however not equal

to exp(—=(V)7) [i.e., exp(—=(V)7) since (V)=V] which is the
branching we need. But nevertheless,

(exp(= V7)) =exp(= (V)7) + O(7), (17)

i.e., the branching obtained by using the stochastic potential
is correct to first order in 7. Hence this poses a limitation on
the size of the time step that we can use. However, the most
important factor in the error is the prefactor of 7 which
depends on the device geometry in the problem. This error is
unacceptable since our main motivation of sampling the po-
tential stochastically is to improve the accuracy over other
alternative methods. To improve the accuracy of the branch-
ing we could use a large enough number of runners to esti-
mate the potential so that the noise is negligible, but this is
very expensive and contrary to the philosophy of improving
accuracy using a stochastic estimate of the potential.

To overcome this problem we use the penalty method [37]
which modifies a random walk to accept noisy energies. The
major part of the following discussion is a direct application
of the penalty method. However, as we will show there are
also some very subtle and special considerations in the

present use of the penalty method. Let V be a WOS potential
estimate for some configuration R, while V is the exact po-
tential for the same configuration. Ggz(V) is the previously
defined branching term using the exact potentials, while
‘GB(V) is the same expression using the WOS potentials. This
branching factor will definitely be biased, and hence we in-
troduce a modified branching factor gB(V) which depends
only on the estimate V. Let P(V) be the probability for ob-

taining the estimate V. For the calculation using the WOS
potential to be accurate, we require that the average branch-
ing must satisfy

(gp) = f dVP(V)g(V) = Gp(V,7), (18)

so that even with a stochastic potential the walker would
branch correctly on average.
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In order to make progress we have to assume a form for

the probability distribution P(V). For now we assume a nor-
mal distribution with mean V and a known variance o2,

_ 1(\7—V)2)
Pw)= —\ﬂ? exp(— 2 )

The variance ¢” in general is neither known nor a constant.
Furthermore, we cannot assume that it is independent of the
walker configuration. Hence this variance is very difficult to
calculate exactly, and we therefore stipulate these conditions
for now and assume that this claim holds. At the end of this
section we mention the modifications necessary to relax this
assumption. For a more detailed discussion of the penaly
method, we refer the reader to the original paper by Ceperley
and Dewing [37].

A simple solution for the modified branching term gz(V)
which satisfies the above considerations is

(19)

gB(f/) =exp[— (V+ o?1/2)7]. (20)

To see that this indeed satisfies the condition that (gB(\7))
=G(V), consider a simple form for the modified branching
gz=Y?)C4(V) along with the probability distribution Eq.
(20) and substitution in Eq. (18) leads directly to the form of

f dR f(R,7)E(R)
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Yo%) =exp(-a?7/2). Since o> is always positive, this
shows that we rely less on a noisy potential and branch less
than we would if the estimate was exact.

This can be easily extended to the importance sampled
branching factor

gs(R,R") =exp

_ (EL+EL+ (0 + 0/2)%'_ 2ET>ET}

21

where E; (V) is the local energy using the stochastic estimate
of the potential. The analysis up to this point is a direct
extension of the penalty method of Ceperley and Dewing
[37], but certain special considerations need to be made to
apply the penalty method in the present context.

Branching according to the above factor in Eq. (21) in-
stead of the branching of Eq. (16) will produce the correct
expectation of observables independent of the WOS potential
V, for example the kinetic energy. If however the observable
is dependent on the stochastic potential V, like the potential
energy itself, we have to take care of the correlations be-
tween the observable and the branching factor. This can be
seen from considering the expectation of the energy which is
usually evaluated from the mixed estimator [2] given by

J 4R dR'G(R.R":7)f(RVE,(R)

(ol H[ W) y

= = lim
PMET (gl e

J dR f(R,7)

= lim

= ME E/(R,) (22)

f dR dR'G(R,R';D)f,,(R") "

where we have simply used the form of Eq. (14) starting with the initial distribution fi,;. If, however, we use the diffusion
Monte Carlo algorithm with a stochastic potential, then the expectations of the local energies become

f dR dR'dV dV'dV'gR.R',V,V ;D)f i RP(V)P(V,V"E,(V",R)

~ 1 - ~
Epmc = EE EL(V’Rm) =

Here §(R,R',V,V ;D) ~Gyx(R,R';D55(V,V';7) is the
modified Green’s function, ]P(f/) is the distribution of the
WOS estimate, and P(V, V") is the joint probability distribu-
tion of obtaining the estimates V and V. V" is the estimate
used to evaluate the “modified” local energy EL(V",R). The

estimate EDMC given by Eq. (23) is not in general equal to
the desired estimate Epyc. The problem and a solution can
be seen from a simple analysis and a modification of the
estimator that will give the desired result. The simplest way
to accomplish this is to require the numerators and denomi-
nators in Egs. (22) and (23) to be equal separately. Our pre-

(23)

f dR dR'dV dV'g(R,R',V,V' ;D). (R P(V)P(V")

vious choice of gz makes the denominators equal. This is
seen from the fact that

g= ’)’Gdiffég = [7(02,Urz)e_ATe_AIT]G(R,R/)

where as in prior notation A=V—V and similarly for A’.
Substitution into the integral in the denominator of Eq. (23)
proves the result.

The numerator is more tricky, and depends on the algo-
rithm for obtaining the estimator. The part of the estimator
that does not depend on the WOS estimate, i.e., the kinetic
energy, does not pose any trouble; it integrates in the same
way as the denominator. The potential part could be obtained
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in two different ways. In the simplest case, we could use

separate and independent estimates V and V" for the branch-
ing and the estimator. In this case the probabilities would be

uncorrelated and P(V, V")=P(V)P(V"). In this case, the inte-
grals again become similar to those explained before and no

modification is necessary, i.e., EL:EL. We will call this the
uncorrelated penalty correction. If, however, we use the same

potential V for both the branching and the estimator, then the
two estimates are identical, i.e., P(V,V")=8(V-V")P(V). In
this case a modification of the form E,(R)=E,(V,R)+d>T

makes the estimator EDMC equal to the desired EDMC. This
can be seen from simply substituting and performing the
integration in Eq. (23).

Up to this point we have assumed that the distribution of
the WOS potential V is normal, P(V) given by Eq. (19), with
a constant noise o> which can be estimated. In our imple-
mentation, we do not assume a given value for the o, but
estimate it for each configuration during the simulation. This
is done by using a number of runners for each of the walker
configurations, so the averaging takes place over all configu-
rations. This is nevertheless an approximation which as-
sumes a normal distribution. Ceperley and Dewing [37] dis-
cuss the practical issues of using the penalty method when
the distribution of ¢ is very different from a normal. The
mean of the potential estimate is normally distributed while
the variance follows a x? distribution. From this Ceperley
and Dewing derive a convenient correction to the penalty
which we only mention below.

To estimate the potential using n WOS runners, we gen-
erate a sequence {\70, ,\7n_1}, where each \7k is indepen-
dent. We use V:E,Vi/ n as the potential estimate, and x?

=3,(V,—=V)*/n(n—1) as the estimator for the noise 2. Under
some general conditions Ceperley and Dewing derive a cor-
rection to the penalty in Eq. (20), given by

7 T Xt X°7°
2 2 +4n(n+l)+3(n+1)(n+3)+ '
(24)

However, our calculations were carried out for a sufficiently
simple system. We found the correction terms to be smaller
than the error in the calculations, and consequently we
dropped them from the final numerical experiments.

We conclude this section by a comment on implementa-
tion. While constructing the propagator G(R,R’) it is cus-
tomary to reuse the energy E;(R) which was calculated in a
prior step during the move to the configuration R. However,

with the stochastic potential we need to reevaluate EL(R)
again, as otherwise this will introduce a bias.

VI. NUMERICAL TESTS

We demonstrate the techniques discussed in this paper in
the context of a simple problem and calculate the polarizabil-
ity of helium by placing a helium atom in the electric field
generated between the plates of an infinite capacitor. This
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FIG. 3. A comparison of different WOS algorithms to evaluate
the potential between the plates of an infinite capacitor. The circles
represent the basic WOS calculation where each run is started from
the point where the potential is sought. The triangles are the inter-
polated estimates from runners starting from the center. The line
represents the exact analytic form of the potential. The inset shows
a comparison of the errors from the different schemes. Each esti-
mate involved 10? runners.

will illustrate several features of implementing the WOS al-
gorithm. Alternatively, we can model the system by a con-
stant electric field and compare the accuracy of the quantum
Monte Carlo method using the stochastically estimated po-
tential. The model potential neglects the effect of induced
image charges, which is small when the plates are far apart,
but the WOS solution includes these corrections. We first
describe the device, and compare the efficiency and accuracy
of different refinements of the basic WOS algorithm to esti-
mate the potential profile within the device.

A. Estimating the potential profile by different WOS
refinements

The vertical plates of the capacitor are at a distance z;
==#1, and plate voltages of ®,,,==+1 in arbitrary units (units
will not be important until we start the quantum Monte Carlo
calculations). We first test our methods of obtaining the po-
tential profile of this device and compare with the analytic
result.

The calculations are compared in Fig. 3. The circles rep-
resent the calculations of the basic WOS, where the potential
at any point P(r) is obtained by generating runs starting from
that point. Since all the runs are computationally similar, the
corresponding errors are also similar, as seen from the large
plateau in the inset. As we approach either side of the z axis,
i.e., near the plates of the capacitor, the errors are reduced
considerably since the relative proximity of one plate in-
creases its influence, hence reducing the variance. This is
seen from the plateau falling off near the sides.

The triangles are estimates from runs all of which origi-
nate from the same point (zo=0), and use the interpolation
scheme described in Sec. IV. Near the center this approach
does just as well as the basic approach, as seen from the two
curves in the inset coinciding. But further out near the plates
the interpolation becomes worse as discussed earlier, since
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the entire estimate becomes dominated by only a few walks.
The point is that while the basic WOS employed 10* runners
for each of the 20 points in the plot, the interpolated method
used 10° runners for the entire plot, hence it was about 20
times faster. In the calculations for the helium atom we ex-
pect even the polarized atom to remain well confined in the
central region, and hence this approach will be three times
faster (total number of particles being 3) than the basic
method.

We also implemented the other methods mentioned ear-
lier, namely, that of using antithetic variates and that of using
a reference value with the correlated sampling. As expected
antithetic variates did not show significant improvement.
Also as expected, the use of correlated sampling using the
reference value was greatly effective in speeding up the cal-
culation about three times (the number of particles). This
also holds considerable promise for more complicated geom-
etries.

B. Importance sampling

Importance sampling can be illustrated for this example of
an infinite capacitor. As shown in Sec. IV, the optimal im-
portance function is the potential itself. Since the external
potential in a capacitor is simply ®(r)=z, this can be imple-
mented to illustrate the construction of such functions. This
can also be derived more graphically, by noting that what we
want is an importance function that leads to sampling regions
of the spheres preferentially in the z direction so that the
walks are directed toward the capacitor plates and hence end
quickly.

The actual algorithm employing this importance function
is simple to describe. Consider the kth domain D, centered at
ri(x;, vi,z;) and with radius dy; ry,, is the next point in the
walk sampled on JD;, the domain surface. So the optimal
importance function is

I(ri) ®ry)  zi dy
S = = = S = 14— 08 Oy

Iry) — ®r)  z %

where 6, is the angle between the z=0 plane and the line
joining r; and ry, ;. The sampling just depends on the coor-
dinate of the point we are about to sample ry,, the coordi-
nates of the present point r; are already known. Note that the
optimal importance function weighted kernel is normalized.

We implement this algorithm on the computer and obtain
zero variance as expected. One point to note is that the vari-
ance is limited to a small nonzero number due to the finite-
ness of the skin depth 6 which can be made arbitrarily small.
A better approach is simply to switch the shape of the do-
main near the boundary, or easier still, to discretize the re-
gion near the boundary into a grid, and a discrete equivalent
of the WOS will exactly converge on the boundary and
hence yield a zero variance.

Next we consider a small perturbation to the optimal im-
portance function I(z)=z+€z> (€< 1), i.e., we mix in a small
quadratic term
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FIG. 4. As the nonoptimal importance function approaches the
optimal form, variance is reduced. For an algorithm using only
spherical domains the variance approaches a limiting value due to
the finite size of the skin depth &. Discretizing near the boundary
will eliminate this limit.
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This leads to an importance function quadratic in cos 6.
The nonoptimal importance function weighted kernel, how-
ever, is not normalized and we have to carry that in the
weight. In Fig. 4 we show the result of the calculation. We
plot the result with two values of skin depth 6 and show that
the error can indeed be arbitrarily reduced by reducing 6.

This generalizes to problems with more complicated ge-
ometries in a straightforward way. The optimal importance
function is the potential itself, and for that one, the normal-
ization of the importance-weighted kernel is unity. Hence for
the general problem, one possibility is to utilize an approxi-
mate potential as the importance function. This approximate
solution could be obtained in any number of ways including
a finite-element solution of the Poisson problem on a dis-
cretized grid using an approximate electron density. The so-
lution, its gradient, and the Laplacian could be tabulated on
the same mesh to generate a nonuniform distribution over a
domain. To obtain the correct potential at the domain center,
one would need to evaluate the approximate normalization
over the domain surface and sample accordingly. Thus im-
portance sampling would greatly improve the efficiency of
the algorithm.

C. Polarizability of He by QMC calculations

We implement these techniques to measure the polariz-
ability of helium, and compare the results with that obtained
by using a model potential. The polarization (estimated by
(z)) is not an observable of the Hamiltonian, and so we have
to use the mixed estimator

P =(2) = 22pmc — (2vmc-

This clearly is not the best way to measure polarizability
since this increases the variance of the estimate. If the vari-
ances of the VMC and DMC calculations are o‘%, and o‘é,
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respectively, then the variance of p is (o7 +407)"2. Caffarel
et al. use the Laplace transform of a two-(imaginary-)time
correlation function for a more accurate estimate of the po-
larization by the quantum Monte Carlo technique [38]. Nev-
ertheless, this simple approach will be able to investigate the
main goal of this test, i.e., how the calculations using the
WOS potential compare with those using the model poten-
tial.

We place a helium atom between the plates of an infinite
capacitor. The plates are at z; =+ 10 a.u. and the helium atom
is placed at zp=0. A voltage of +®,, is applied to the gates,
and this is compared with a model electric field of
&,==P,pp/z,- All numbers are in atomic units. The plates are
kept sufficiently far away from the atom such that the effect
of the images charges induced in the plates is small. This
allows a comparison of results obtained with the WOS with
those using a model linear potential —&,z. Also if the plates
are very close to the atom it could interfere with the electron
cloud and distort the atom radically.

We choose a trial wave function of the form

\I’T(ql,‘h) = |1s(ql)>|ls(q2)>CXp<_ 1 -Cll-qb];u)

where the ¢’s are the electron coordinates, g;;= lgi—q i1, and a
and b are variational parameters. We can determine a to be
—1/2 by imposing the cusp condition [2] which reflects the
divergence in the wave function when the two electrons ap-
proach each other. Here |1s(g)) is the single-particle orbital
and the same for up and down spins. This simple two-
electron problem avoids the complications of nodes in wave
functions and helps illustrate the main issues of using the
WOS with quantum Monte Carlo methods.

The conditions of the problem have been set such that the
capacitor adds only a small perturbation to the helium atom,
and thus we need only modify the single-particle orbitals
very slightly to reflect the polarization of the atom in the z
direction. The wave function of helium in free space is
spherically symmetric, and since the variational Monte Carlo
technique does not modify the wave function it would not be
able to polarize the atom. Hence we introduce a parameter «
which would control the polarization of the atom. A zero
value of a would correspond to the unpolarized case.
We choose the form

4
15()) = (1 + aq,) > ¢;exp(= \jq).

J=0

where ¢, is the z coordinate of ¢, and the parameters c;,\;
are obtained from calculations of Clementi and Roetti [39].
We use preoptimized values of these parameters (c,
=2.063076 X 107!, ¢,=2.2346X 107", ¢;=4.082X 1072,
c4==9.94X 1073, ¢5=2.3X 1073 and \|=1.4171, \,=2.3768,
N3=4.3963, \,=6.527, A\5=7.9425).

We optimize the Jastrow parameter b and the polarization
parameter « by correlated sampling. When we use the sto-
chastic potential we minimize only the mean of the local
energy, and not any combination of the variance. As de-
scribed before, we record not only the configurations {R}, but
also the local potential energy V(R,,) V m for use in mini-
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mization of the variational energy. The polarization obtained
from variational Monte Carlo with the optimized parameters
provide an estimate for the polarization, but as noted earlier
this is not very accurate since polarization is not an observ-
able of the Hamiltonian.

D. Polarizability results and analysis of the penalty method

We test our code by calculating the ground state energy of
a helium atom; our result —2.903 61(9) a.u. compares well
with  the best known theoretical estimate of
—2.903 724 377 034 119 598 a.u. [40] and the experimental
value of —2.9038 a.u. [41]. Next we carry out the calcula-
tions in the presence of an electric field by two different
methods as described before. WOS refers to the calculations
using the stochastic potential, and “model” refers to the lin-
ear potential model. The results are shown in Table I. From a
least-squares fit of the data our estimate for the polarization
is 1.417(16) a.u. from the WOS data as in Fig. 5 and
1.362(16) a.u. from the model calculation, which can be
compared with 1.382(16) a.u. as obtained by Cafarrel er al.
[38].

The result suffers from the drawbacks of our estimator as
discussed before, but the main point to note is the compari-
son between the WOS and model results. The difference in
the result comes from the induced charges in the capacitor
(not captured in the model) as will be discussed below. From
Table I we see that the results agree within error bars for both
the optimized VMC and DMC calculations. The diffusion
Monte Carlo calculations were carried out using only 20 run-
ners for each walker configuration. We also use the penalty
method, the results of which will be discussed next.

To investigate the effect of using the WOS potential in the
diffusion Monte Carlo calculation we study the time-step er-
ror, since we expect the effect of using the stochastic poten-
tial to be magnified with increasing time step, as seen in Eq.
(17). In Fig. 6 we compare the DMC ground state energy
from the model potential calculation to that using the WOS
for different numbers of runners (per walker). The uppermost
curve labeled “model” is the linear potential model which
shows a quadratic scaling with the time step. This would
have been linear if not for the acceptance-rejection step in
the DMC algorithm mentioned earlier. The lowermost curve
labeled WOS(1) represents DMC calculations using a single
runner (per walker) without any penalty correction. This ob-
viously suffers from the branching error which is magnified
at larger time steps.

If, however, we increase the number of runners (per
walker) to 5, we see from the WOS(5) curve that the result is
improved but still suffers from the bias. The use of the pen-
alty method corrects this problem, and the curve marked
penalty(5) follows the model potential for the entire range of
7 that we tested. We also note that the correction of Eq. (24)
did not make a difference to the calculation within the given
error bars. If we increase the number of runners to about 20,
then the basic WOS calculation without the penalty method
is greatly improved, and it overlaps with the correct result for
a large range of 7 up to about 0.2 in this calculation; but
beyond that the bias in the result becomes apparent. Since
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TABLE I. Calculation of polarization of helium with quantum Monte Carlo technique. The system consists of a helium atom placed between the plates of an infinite capacitor as
described in this section. Two similar calculations were run, one using the stochastic potential using the WOS algorithm, and the other using a model linear potential. The variational Monte

Carlo results here are obtained by optimizing the trial wave function. For the DMC simulation, we used a time step of 7=0.01.

Eg

DMC Mixed

WOS

VMC
WOS

DMC

WOS

VMC
WOS

WOS Model

Model

Model

Model

Model

0.0297(15)

0.0286(15)
0.0579(15)

0.0277(7)
0.0529(6)
0.0776(7)
0.1109(7)
0.1341(7)

0.0277(7)

0.0257(6)
0.0469(6)
0.0702(7)
0.1081(7)
0.1332(7)

0.0268(6)
0.0611(6)
0.0827(6)
0.1084(7)
0.1332(7)

—2.904149(89)
~2.904932(82)
—2.906314(81)
~2.908208(86)
~2.910856(89)

~2.904313(85)
~2.905298(82)
—2.906741(87)
~2.908636(84)
~2.911209(89)

—2.888080(97)
—2.888904(93)
—2.890119(94)
—2.891927(99)
—2.894134(95)

—2.888461(92)
—2.889087(95)
—2.890392(100)
—2.892102(100)
—2.894533(110)
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FIG. 5. Least square fit of the polarization data obtained from
the WOS calculation of the helium atom placed between the plates
of an infinite capacitor. The result used is the mixed estimator ob-
tained from the VMC and DMC data presented in Table I. The data
for the model calculation is not shown since it nearly overlaps with
the WOS data.

the calculations using the penalty method with five and 20
runners (per walker) overlapped with each other we did not
show them separately in the figure.

Though the model and the penalty calculations run paral-
lel, they are offset by a constant amount. This is to be ex-
pected since the model calculation neglects the effect of the
charges induced on the capacitor plates. A very simple cal-
culation using dipole images (but neglecting multiple reflec-
tions) estimates this effect to be about 2 X 107 a.u., the same
order as the observed shift of 3X 107 a.u. Thus the WOS
calculation can capture the induced charge effect neglected
by the model.

To study the effect of the penalty method, we compare in
Fig. 7 the effect of the two different types of penalty correc-
tions that we discussed in Sec. V B. In the calculations we
use a large number of runners (per walker) to estimate the
potential to be used in the branching term. The first estimator
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FIG. 6. Ground state DMC energy of the helium atom in an
electric field of £,=0.1 for different time steps. In parentheses is the
number of runners used per walker for the WOS calculations. This
is compared with the calculation using the model field.
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FIG. 7. Testing the convergence of the two penalties. The un-
correlated penalty method using an independent uncorrelated (to the
branching) potential estimate converges much faster than the ap-
proach where we modify the estimator. However, for a large num-
ber of runners the second converges to the correct result from
above. The calculation was carried out at 7=0.25. The difference
from the model is due to the induced charge effect.

uses a separately sampled value; we call this the uncorrelated
penalty approach. We can construct another estimator using
the same estimate that we use for the branching, but then we
have to add another correction to it as discussed before. Fig-
ure 7 shows that the uncorrelated penalty method has a faster
convergence, but both approaches converge for large number
of runners (per walker).

Also shown in Fig. 7 is the estimate of the model calcu-
lation. We see that the WOS calculations converge to a value
lower than the model result. This is the induced charge effect
as mentioned earlier. As we increase the separation of the
capacitor plates, this effect decreases and for a plate separa-
tion of about 100 a.u. (keeping the electric field constant) the
WOS results converge to the model value. This demonstrates
another important feature of the algorithm. In order to keep
the field constant, we had to increase the gate voltages. The
algorithm remained stable under this scaling.

The WOS calculations with a single runner (per walker)
were only about four times slower than that with the model
potential; this is not too bad considering the generality of the
WOS method. The WOS method can be applied to any com-
plicated geometry for which a model might not exist; how-
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ever, the time taken by the code will also depend on the
complexity of the device geometry. These calculations scale
linearly with the number of runners; for instance the calcu-
lation with 20 runners was about 20 times more expensive
than the one with a single runner.

VII. CONCLUSIONS

We have demonstrated that a stochastically obtained po-
tential can be used efficiently with popular quantum Monte
Carlo methods, specifically the variational and diffusion
Monte Carlo techniques. To this end we have modified and
improved an efficient walk on spheres algorithm which can
handle arbitrary device geometries and gate voltages and
even take care of induced charge effects of the evolving
walker configurations. This approach will make possible ac-
curate application of quantum Monte Carlo methods to real-
istic models of physical devices.

We also demonstrated the application of the penalty
method to account for the stochastic nature of the potential.
To use it with the diffusion Monte Carlo technique we
needed to modify the branching term and use a potential
estimate that had to be uncorrelated with the estimator.

Future goals involve applying this method to more com-
plicated devices like quantum dots in semiconductor hetero-
structures. Also of interest is to extend this method with
other quantum Monte Carlo methods like reptation and the
domain Green’s function Monte Carlo technique.
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